787 research outputs found

    Experimental assessment of bi-directional transmission distribution functions using digital imaging techniques

    Get PDF
    Many daylighting applications require a precise knowledge of the directional transmission features of advanced fenestration materials. These photometric properties are described by a bi-directional transmission distribution function (BTDF), whose experimental assessment requires an appropriate equipment. A novel bi-directional photogoniometer, based on digital imaging techniques, has been designed and developed for that purpose. The main advantages of this device are the significant reduction of the time required for data measurement and its capability to assess an almost continuous BTDF function. These features can be achieved only through detailed and accurate calibration procedures of the bi-directional photogoniometer, which are described in this paper, together with digital image and data processing. Several experimental results, obtained for different fenestration materials, are used to illustrate the capabilities of this novel equipment

    Bi-directional Photogoniometer for the Assessment of the Luminous Properties of Fenestration Systems

    Get PDF
    Most energy saving applications of advanced fenestration systems (solar blinds, novel types of glazing and daylight redirecting devices) require a precise knowledge of their directional light transmission features. These photometric properties can be described by a Bi-directional Transmission Distribution Function (BTDF) whose experimental assessment requires appropriate equipment. A novel bi-directional transmission photogoniometer, based on digital imaging techniques, was designed and set up for that purpose. The apparatus takes advantage of a modern video image capturing device (CCD digital camera) as well as of powerful image analysis software (pattern recognition) to considerably reduce the scanning time of a BTDF measurement, in comparison to existing devices that use a conventional approach (mobile photometer). A detailed calibration and validation procedure was used to obtain optimal experimental accuracy for the device during the assessment of BTDF data. It included a spectral, a photometric and a geometrical calibration of the digital video system, as well as several additional corrections, leading to an overall relative accuracy better than 11% for BTDF data. A special effort was made to improve the user-friendliness of BTDF measurement by facilitating the data acquisition and treatment (definition of a data acquisition and electronic data format) and by offering different possibilities of BTDF visualisation (hemispherical representation, axonometric view of photometric solids, C-planes). Overall, the photometric equipment was used to assess the BTDFs of more than 20 novel fenestration products of the industrial partner of the project (Baumann-Hüppe Storen AG). The experimental data produced was successfully used by the company to optimise the visual and energy saving performance of their products, which confirms the adequacy of the novel bi-directional photogoniometer for practical building applications

    Innovative bidirectional video-goniophotometer combining transmission and reflection measurements

    Get PDF
    To assess the daylighting performances of a building, one of the most commonly used quantities is the Daylight factor, which is defined for a given surface element inside the analysed room as the ratio of the inside and outside illuminances under a CIE overcast sky. The Daylight factor consists of three components: the sky component, due to light flux reaching the surface element directly from the sky, the externally and the internally reflected components, respectively due to light flux reflected on external and internal surfaces. To estimate the direct sky component (also called sky factor), analytical methods can be used, based on the luminance distribution of the sky and the window’s geometric properties (dimensions and position in regard to the considered surface element). However, such methods have always been restricted to vertical (lateral) and horizontal (zenithal) windows, requiring heavy approximations to be applied whenever a tilted rectangular opening was considered. In this paper, a generalized method for assessing the sky component is proposed, extending it to rectangular windows of any tilt angle. As a purely analytical approach was found to be inapplicable, it is based on an optimised combination of vertical and horizontal windows situations. To validate the developed methodology, scale model measurements were performed with a sky simulator for two rectangular openings of varying tilt angle (every 15° from vertical to horizontal): the experimental results proved to be in very good agreement with the calculation-based approach

    Effect of oxygen plasma etching on graphene studied with Raman spectroscopy and electronic transport

    Get PDF
    We report a study of graphene and graphene field effect devices after exposure to a series of short pulses of oxygen plasma. We present data from Raman spectroscopy, back-gated field-effect and magneto-transport measurements. The intensity ratio between Raman "D" and "G" peaks, I(D)/I(G) (commonly used to characterize disorder in graphene) is observed to increase approximately linearly with the number (N(e)) of plasma etching pulses initially, but then decreases at higher Ne. We also discuss implications of our data for extracting graphene crystalline domain sizes from I(D)/I(G). At the highest Ne measured, the "2D" peak is found to be nearly suppressed while the "D" peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.Comment: 10 pages, 5 figure

    Measurement of bi-directional photometric properties of advanced glazing based on digital imaging techniques

    Get PDF
    Many daylighting applications require a precise knowledge of the transmission properties of fenestration materials, called bi-directional transmission distribution functions (BTDF), which necessitate systematic and accurate measurements. A new type of bi-directional photogoniometer, based on advanced imaging techniques, has been developed to this end; its mechanical concept, the calibration procedures and the first results are presented here

    Photogoniomètre bidirectionnel pour l’évaluation des performances lumineuses de systèmes de fenêtres

    Get PDF
    Les applications en lumière naturelle exigent une connaissance objective et systématique des propriétés de transmission lumineuse des systèmes de fenêtres. Ces caractéristiques photométriques sont décrites par une fonction de distribution bidirectionnelle de transmission (BTDF), dont l‘évaluation expérimentale nécessite un équipement approprié. Un nouveau type de photogoniomètre bidirectionnel, basé sur des techniques d’imagerie numérique, a été développé dans ce but. Ses principaux avantages résident dans la réduction significative du temps de mesure et dans la possibilité de déterminer une fonction BTDF quasi continue. Ces résultats ne peuvent être atteints que grâce à des procédures de calibrage spécifiques et précises du photogoniomètre bidirectionnel, présentées dans cet article, avec un traitement approprié des images et des données
    • …
    corecore